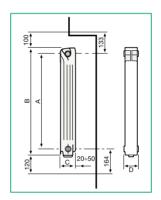
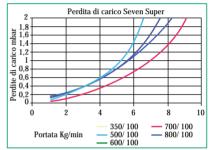
RADIATORE MOD. SEVEN SUPER

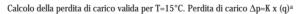


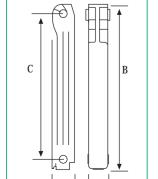
Modello	Profondità	Altezza	Interasse	Lunghezza	Diametro	Contenuto	Potenza ΔT 30	Potenza ΔT 50	Esponente	Coefficente
	(C)mm	(B)mm	(A)mm	(D)mm	pollici	litri/elem.	W/elem.	W/elem.	n	K _m
350/100	97	407	350	80	G1	0,25	47,9	93,5	1,3096	0,5572
500/100	97	557	500	80	G1	0,32	63,5	124,9	1,3236	0,7045
600/100	97	657	600	80	G1	0,36	73,1	143,8	1,3248	0,8071
700/100	97	757	700	80	G1	0,39	80,2	158,2	1,3308	0,8675
800/100	97	857	800	80	G1	0,43	88,2	174,8	1,3387	0,9293


Pressione massima di esercizio: 1600kPa (16 bar) Equazione caratteristica dal modello ϕ =Km Δ Tn (riferimento EN 442-1). I valori di potenza termica pubblicati, espressi Δ T=50 k sono conformi alla norma europea EN 442-2.

La gamma Super nasce da un progetto di ricerca atto ad ottimizzare le performace dei radiatori in modo da poter offrire prodotti con elevate prestazioni meccaniche ed energetiche.

Una forte componente innovativa, raggiunta grazie ai 5 brevetti internazionali che questo prodotto è riuscito ad ottenere, rendono i radiatori della gamma Super ideali per la ristrutturazione e per il funzionamento a bassa temperatura.


RADIATORE MOD. KALDO


Modello 1	Profondită	à Altezza	Interasse	Lunghezza	Gas	Peso Appross.	Quantità Acqua		Potenza ΔT=50K		Gas	Portata Nominale	Perdita carico ^P(T=15°C)	K	a
	(A)mm	(B)mm	(C)mm	(D)mm		Kg	lt	W/elem	W/elem	W/elem		$10^{-3} \text{m}^3/\text{sec}$	Pascal		
350(2010-L	S) 95	431	350	80	1"	1,170	0,32	45,6	88	111	1,284	0,020	4	7316	1,9322
500(2010-L	S) 95	581	500		1"	1,420	0,46	61,1	119	151	1,304	0,027	10	6834	1,8345
600(2010-L	S) 95	681	600^{80}	80	1"	1,660	0,52	70,5	138	175	1,314	0,032	17	11818	1,9507
700(2010-L	S) 95	781	700	80	1"	1,810	0,62	78,8	154	195	1,311	0,036	19	7272	1,8101
800(2010-L	S) 95	881	800	80	1"	2,040	0,68	87,4	172	231	1,325	0,041	23	7352	1,8181

Calcolo della Potenza Termica ΔT generico

Potenza Termica ΔT generico= Potenza termica ΔT 50 x + $\left(\begin{array}{c} -any \ \Delta T \\ \hline 50 \end{array}\right)^N$

La lega d'alluminio utilizzata è garantita per qualità e conformità alle norme; offre ottima conducibilità termica, resistenza meccanica durabilità alla corrosione.

Il collaudo avviene ad una pressione di 8 BAR (la pressione massima nominale di esercizio è 6 BAR).

La fase di finitura del prodotto si effettua in due fasi distinte e successive il pre-trattamento delle superfici e la verniciatura. Il pre-trattamento consiste

in sgrassaggi, lavaggi e trattamento alle nanotecnologie. la verniciatura viene realizzata mediante il processo di anaforesi e una rifinitura con polveri epossipoliesteri per conferire al radiatore l'aspetto finale.

Il ciclo di produzione si conclude con l'imballaggio: ogni batteria viene ricoperta con un film di polietilene termoretraibile e inserita in una resistente scatola di cartone che riporta i dati identificativi del prodotto.

Tutte queste operazioni sono costantemente intervallate da controlli qualitativi sia a livello visivo che strumentale.